

Avian Influenza (or the elusive killer that puts its expert to shame)

Fernando Carrasquer Puyal

DVM CEAV ECPVS Resident Global Technical Service – Veterinary specialist H&N International GmbH

It has not been an easy year with bird flu ...

Source: Euronews

Etiology TAXONOMICAL CLASSIFICATION

Picture: Wikipedia

Family: Orthomyxoviridae **Genus:** Alphainfluenzavirus **Specie:** Alphainfluenzavirus influenzae

Ecology AIV RESERVOIR

10^{8,7} virus particles per gram of infected duck faeces

Webster 1978

Picture: Dean Pearson

Ecology

AFFECTED BIRD FAMILIES

Anseriformes Charadriiformes Ciconiiformes Galliformes Passeriformes Columbiformes Falconiformes Piciformes Pelecaniformes Procellariiformes Podicipediformes Gaviiformes Gruiformes

60 % of known bird families (at least)

Pictures: Wikipedia

Ecology

Picture: Wikipedia

INFLUENZA IN OTHER SPECIES

Etiology

AIV STRUCTURE

M2 protein

Hemagglutinin

Lipid envelope

Segmented RNA

M1 protein

Neuraminidase

Ecology

AIV'S SURVIVAL STRATEGY

Always on the run!!!!

TOMMY LEE JONES WESLEY SNIPES ROBERT DOWNEY JR. The cop who won't stop is back. But this time \mathbf{E} e's chasing dow a lot more than a fugitive U.<u>S.</u>MAK5HA COMING IN MARCH

Ecology

A BREAKAWAY ARTIST ...

Antigenic drift

Antigenic shift

Etiology

AIV STRUCTURE

M2 protein

Hemagglutinin

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Human	•	•	•		\pm		\pm		\pm							
Equine			•				•									
Swine	•		•	<u>+</u>	<u>+</u>				\pm							
Avian	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

Lipid envelope

Segmented RNA

M1 protein

Neuraminidase

MAIN PROTEIN SURFACES

Hemagglutinin (H)

Picture: Wikipedia

Pathogenesis

TYPES OF SURFACE ANTIGENS BY ANIMAL SPECIES

Hemagglutinin (H) subtypes:

Human12345678910111213141516Equine \bullet \bullet <

Neuraminidasa (N) Subtipos:

Human	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 6	7 ±	89
Equine				
Porcine		<u>+</u>		
Avian				

Pathogenesis

Dou 2017

Pathogenesis

Low Pathogenic Avian Influenza

RETR Non OIE list Mild respiratory disease

H1-H16

High Pathogenic Avian Influenza

RERRRKR

OIE list High mortality H5 or H7

2??

Wahlgren 2011

Clinical signs & lesions

(a) Fibrinous tracheitis
with fibrinous plug in
the trachea,
(b) tracheal
bifurcation and
(c) fibrine in bronchi

Pictures: M. Salek

Clinical signs & lesions

WORLDWIDE DISTRIBUTION OF LPAI H9N2

Peacock 2019

Clinical signs & lesions HPAI H5N1 LESIONS (CHICKENS)

c d for the second seco

(a) petechiae
in the coelomic fat
(c), haemorrhages in
the proventricular
mucosa
(b) haemorrhages in
the intestinal serosa
and
(d) in the mesentery

Fabian 2022

Clinical signs & lesions HPAI H5N1 LESIONS (TURKEYS)

(a) Intestinal serosal haemorrhage in the mesentery (b) intestinal serosal haemorrhage (c) haemorrhages in the proventricular mucosa (d) haemorrhagic tracheitis

Pictures: P. Catala

GROSS LESION OBSERVED IN BIRDS WITH HPAI H5N1

Clinical signs & lesions

Fabian 2022

Gallus gallus

Is Avian influenza a zoonotic disease?

Picture: Wikipedia

SEASONAL FLU

Every winter, H1 - (H2) - H3

Source: HSE

Flu in humans PANDEMIC FLU

I had a little bird, And its name was Enza I opened the window And in flew Enza

Flu in humans

BIRD-TO-HUMAN TRANSMISSION OF INFLUENZA

AVIAN FLU IN HUMANS

Horman 2019

Etiology

AIV STRUCTURE

M2 protein

Hemagglutinin

Lipid envelope

Segmented RNA

M1 protein

Neuraminidase

FIRST H5N1 DETECTION IN EUROPE

10 ^{6,5} ELD50 H7N7 (O/SP)

0 ^{6,5} ELD50 H5N1 (O/SP) 100% mortality 2 dpi

26% mortality

10 dpi

Barbarie duck 10 ^{6,5} ELD50 H5N1 (O/SP) 6 weeks

10 ^{6,5} ELD50 H5N1 (O/SP) 18 weeks 100% mortality 18 dpi

Nervous signs 10dpi 0% mortality 18 dpi

Van Borm 2005

INITIAL INTRODUCTION INTO AI-FREE COUNTRY

Migratory waterfowl and other wild birds

Poultry

Companion or pet birds

Domestic pigs

Pictures: Wikipedia

TRANSMISSION FROM MIGRATORY BIRDS

Mechanical transmission

Water

Direct Contact

D

Z

TRANSMISSION FROM INFECTED POULTRY

Direct contact

transmission

Tools Vehicles

Dead birds

Mechanical transmission

HPAI POSITIVE COUNTRIES

HPAI CASES IN POULTRY BY Jul- Dec 2023

HPAI H7 OUTBREAKS IN POULTRY IN 2022

HPAI H5 OUTBREAKS IN POULTRY IN 2022

2.3.4.4b H5N1 HPAIV

🏶 viruses

MDPI

Article

Epidemiological Features of the Highly Pathogenic Avian Influenza Virus H5N1 in a Densely Populated Area of Lombardy (Italy) during the Epidemic Season 2021–2022

Silvia Bellini ^{1,*}, Alessandra Scaburri ¹^(D), Erika Molica Colella ¹, Monica Pierangela Cerioli ¹^(D), Veronica Cappa ¹, Stefania Calò ¹^(D), Marco Tironi ¹^(D), Mario Chiari ², Claudia Nassuato ², Ana Moreno ¹^(D), Marco Farioli ² and Giuseppe Merialdi ¹

🏶 viruses

MDPI

Communication

Detection of New H5N1 High Pathogenicity Avian Influenza Viruses in Winter 2021–2022 in the Far East, Which Are Genetically Close to Those in Europe

Norikazu Isoda ^{1,2}⁽⁵⁾, Manabu Onuma ³, Takahiro Hiono ^{1,2}⁽⁶⁾, Ivan Sobolev ⁴, Hew Yik Lim ¹, Kei Nabeshima ³, Hisako Honjyo ³, Misako Yokoyama ³, Alexander Shestopalov ^{4,*} and Yoshihiro Sakoda ^{1,2,*(5)}

DISPATCHES

Highly Pathogenic Avian Influenza A(H5N1) Clade 2.3.4.4b Virus in Poultry, Benin, 2021

Idrissa Nonmon Sanogo, Fidelia Djegui, Yao Akpo, Corneille Gnanvi, Gabriel Dupré, Adam Rubrum, Trushar Jeevan, Pamela McKenzie, Richard J. Webby, Mariette F. Ducatez

Karo-karo 2022

2.3.4.4b H5N1 HPAIV

Ruopeng 2022
CLADE H5Nx EVOLUTION

Ruopeng 2022

EVOLUTION OF ISOLATED SUBTYPES IN EUROPE

EFSA 2022

NEWLY INFECTED SPECIES?

> Vet Microbiol. 2022 Jul;270:109461. doi: 10.1016/j.vetmic.2022.109461. Epub 2022 May 13.

Genuine lethal infection of a wood pigeon (Columba palumbus) with high pathogenicity avian influenza H5N1, clade 2.3.4.4b, in Germany, 2022

Martin Peters ¹, Jacqueline King ², Peter Wohlsein ³, Christian Grund ², Timm Harder ⁴

2.3.4.4b H5N1 HPAIV: INFECTIONS IN PHEASANTS AND CHICKENS

HPAI-ISOLATED BIRD FAMILIES IN EUROPE 2022

EFSA 2022

2.3.4.4b H5N1 HPAIV: A NEW GLOBAL PLAYER

Zhang 2014 Günther 2022

CME%

2.3.4.4b H5N1 HPAIV: SILENT INFECTIONS

House 1

Cumulative Mortality Rate (%) in clade 2.3.4.4b H5N1 HPAIV infected broiler flock

House 2

ELISA 0/35 Cloacal PCR 0/60 Tracheal PCR 0/60 Organs PCR 1/5

Gobbo 2022

2.3.4.4b H5N1 HPAIV: NEW ROLE OF MAMMALS

RESEARCH

Outbreak of highly pathogenic avian influenza A(H5N1) clade 2.3.4.4b virus in cats, Poland, June to July 2023

Katarzyna Domańska-Blicharz¹, Edyta Świętoń², Agnieszka Świątalska³, Isabella Monne⁴, Alice Fusaro⁴, Karolina Tarasiuk¹ , Krzysztof Wyrostek¹, Natalia Stys⁵ Fijol¹, Aleksandra Giza², Marta Pietruk², Bianca Zechchim², Ambra Pastori⁴, Łukasz Adaszek³, Maigorzata Pomorska-Móle, Grzegorz Tomczyk¹, Calogero Terregino⁴, Stanisław Winiarczyk^{1,2}

Gobbo 2022

AND ... WHAT DO WE DO NOW?

Avian influenza control programmes

Education

Polandball -Gesundheit

Or

Hongkong Government

Education

This article briefly explains the general characteristics of biosecurity programmes and how bird flu spreads, then gives a list of biosecurity steps of special importance in periods when there is a risk of bird flu cases appearing.

H&N

Biosecurity programmes in poultry farms

Biosecurity plays a crucial role in controlling bird flu (and practically any avian disease). In disease-free areas, it is the main tool to prevent the disease from entering farms in the territory. However, the other pillars of the programme are also essential, since they complement the biosecurity and work in synergy with it. For biosecurity programmes to have a real impact on the birds' health, they must have a series of characteristics:

品

They have to be introduced and work in the long term. It is very Biosecurity is not simply about taking isolated measures on some farms, but rather about the company itself working in a way that minimises the risk of diseases entering and spreading. This implies a lot of changes in terms of facilities, procedures logistics, staff training, etc.

Of course, for certain diseases, there will be specific parts of the biosecurity programme that may be more important

Understanding how bird flu is transmitted The avian influenza virus (AIV) or bird flu is

Ø

all-encompassing. In other words,

they must cover all the risks of

diseases entering or spreading

on farms. Biosecurity can be

We can then identify different

pest control, water and feed,

lacement of birds, removal

rotocol, etc.). They all work

together, but the programme is

only as strong as its weakest link.

by-products, staff training, L&D

ogrammes to control specific

divided into three categories

cation, facilities and operat

H&N

highly diffusible and infectious. It can infect most known families of birds which includes Anseriformes (ducks, agese and swars), Caradriformes (oulis) Ciconiformes (herons), Columbiformes (pigeons), Falconiformes (birds of prey) and Galliformes (partridges and pheasants) and more.

However, different strains show varying degrees of adaptation to different host species, Transmission between different bird species also can occur, especially between closely related ones. Furthermore, direct transmission to mammals, though less common, has also been documented.

Adapting biosecurity in periods of high bird flu risk:

Biosecurity programmes must be set up to prevent the risk of the disease entering before periods of high bird flu risk begin In any case, during such periods there are some especially critical measures that must be reinforced:

Risks of AIV being introduced due to migratory birds

Avoid contact with wild birds; any direct contact with such birds and poultry must be avoided. To do so, buildings must be made "wild bird proof". This means:

The farm's walls and roofs must be completely closed and not allow any type of wild bird to enter.

- Windows and air inlets must be protected with bird mesh or an equivalent system. Such protection must be fitted well and not leave gaps allowing wild birds to enter.
- The access door must remain closed when not in use, and in any case it must not give direct access to the birds' area. Doors that are not for daily use must he holted
- In the case of birds in systems with access to outdoor zones, authorisation must be requested from the official veterinary services to be evenneed from the obligation to use such zones where contact with wild birds is impossible to control.

Avoid attracting wild birds to the farm: farms must be "unfriendly" territories for wild birds. To do so:

Prevent areas of stagnant water from appearing. The land in the surrounding areas must be levelled to prevent stagnant water building up. The possibility of using drains and guttering to drain off water from the buildings' perimeter should be considered

Prevent birds from nesting in farm buildings or nearby structures. It is not advisable to have trees or brushy areas of vegetation in the surrounding area.

Ensure the silos are sealed tight so that birds cannot access the feed. Likewise, spillages of feed that may attract birds must not be allowed.

Prevent chicken manure from building up in the areas surrounding the buildings, since it always contains undigested cereal grains, which attracts various types of birds.

In a free range bird system, avoid having drinkers or feeders in uncovered zones in outdoor corrals.

Remove unnecessary ledges or horizontal surfaces that may be used by wild birds to perch on. Systems such as laser cannons or other devices can also he used to scare away hirds

Farms should not be built in the immediate vicinity of marshes, lakes or other areas where wild birds often make their migratory stops.

H&N

Biosecurity BIOSECURITY LEVELS

Biosecurity FARM LOCATION REALLY MATTERS

Picture: Google maps

BIOSECURITY PROGRAMS

VISITOR POLICY (The easiest and best to apply)

Biosecurity A DECISION TREE FOR ACCEPTING VISITORS

THE VEHICLES ARE NOT FOR DRIVING ON THE FARM

External parking

No entrance to all avoidable vehicles

Complete disinfection for all entering vehicles

ENTRANCE TO A FARM (IDEALLY)

NOT TO **DO** FOR POULTRY WORKERS

No visit to other farms.

No keeping backyard poultry at home.

No bird related hobbies.

WILD BIRDS: THE FLYING RODENTS (EVEN WORSE)

Do not attract birds by feed spillage or others Do not allow birds to nest in your premises

WATER SOURCE REALLY MATERS

1. Surface waters

2. Well

3. Public water network

Microbiological quality

Chemical Quality

Pre-treatment

DEAD BIRDS ARE NOT A SUB PRODUCT THEY ARE A BIOLOGICAL RISK

Remove all dead birds from the house daily

Store them in a correct container

Destroy them totally as soon as possible

MANURE IS A SUB PRODUCT BUT IT IS STILL A BIOLOGICAL RISK

Remove it from the house as soon as possible

Treat the manure before spreading it on the fields.

Do not spread poultry manure around other poultry houses

THE BIG 3

Average ranking of 21 biosecurity measures for avoiding the introduction on commercial chicken holding with indoor housing

B: Prevent direct wild bird contact

L: Hygiene lock to production unit

G: Restricted access to visitor

EFSA 2017

Diagnosis and surveillance SAMPLING FLOCKS

Blood

@ Flock surveillance

Tracheal swabs Cecal tonsils Cloacal swabs

@ diagnosis@ surveillance

Virology

Serology

ELISA

- SPF chicken embryos
- Tissue cultures

• HI (H1 - H16)

• NI (N1 - N9)

Molecular biology

- RT- PCR
- Sequencing

Case confirmation

LPAI infections

monitoring programs

Vaccination monitoring

Clade determination

Epidemiology studies

Diagnosis and surveillance PREDICTIVE RISK MAPS

Stamping out WORKING FOR BIOCONTAINMENT

RESTRICTIONS

SACRIFICES

DESTRUCTION

C&D PROCEDURE

Time is of crucial importance. Logistics is the key point.

Vaccination programmes

Vaccination programme against HPAI

Vaccination programme against LPAI H9N2

Vaccination programmes TYPES OF AVIAN INFLUENZA VACCINES

Inactivated vaccines

Recombinants vaccines

Vaccination programmes WHAT TO EXPECT FROM AI VACCINATION ?

- Reduce replication of AIV in respiratory & GI tract
- Prevent illness and death in poultry
- Reduce transmission to birds and humans

CAN'T

- Infection is still happening
- Interferes with monitoring programmes
- Poor protection against AIV from other serotypes/clades

Vaccination programmes

Vaccination programmes

Vaccination programmes MEXICO: H7N3 VACCINATION PROGRAMME

Vaccination programmes AVERAGE AI VACCINE COVERAGE RATE FOR YEARS 2001-2010 OF USAGE

Vaccination programmes VACCINE POTENCY & PROTECTION

Swayne 1999

0.005 μg 0.05 μg 0.5 μg 5 μg

Vaccination programmes VACCINE POTENCY & ANTIGENIC SCAPE

AIV can scape from vaccines protection by mutation at critical antigenic site Update in vaccine seed strain can be needed time by time.

2. High titers fromAntigenically relevantvaccines slow downantigen escape dynamics.

Sitaras 2020
Biosecurity

ANTIGENIC SCAPE: VACCINE RESPONSE EVOLUTION IN EGYPT

Biosecurity

VACCINATION STRATEGY: THE FRENCH CASE

	Scenario #1	Scenario #2	Scenario #3	Scenario #4
Targeted species	Ducks, turkeys	Ducks, turkeys, layers, capons	Ducks, turkeys, layers, Gallus > 42 D	All poultries except breeders and some wild games
Targeted areas	High-risk areas	All areas and high-risk areas for capons	All areas + extended high- risk areas for capons	Throughout France
Targeted period	From 1st of Nov to 30 th of April	Thoughout the year	Thoughout the year	Thoughout the year
Vaccination cost (millions euros)	12 – 13.5 M€	51 – 72.5 M€	89 – 129.4 M€	186.1 - 189.1 M€
Monitoring cost (millions euros)	22.3	87.9	110.4	139.7
Benefits	Cost / risk of spread approach	Complete protection of 3 species	Global approach aiming at reaching an immunity in high poultry density areas	Massive vaccination ensuring global protection
Risks	Lack of immunization coverage	Minimum duration of 18 months	Technical and economical feasability	Technical and economical feasability

Source: ITAVI

Take home message

INTERNATIONAL

1. AIV is a virus with a great capacity for mutation and evolution. This must be taken into account in its control.

2. The Al control programmes are based on several points. **Biosecurity** and Surveillance are fundamental. Vaccination may be advisable in some cases.

3. A properly implemented vaccination programme is a great help in controlling AI in endemic areas but cannot solve the disease on its own.

Thank you for your attention

H&N International – Making your success the center of our universe

Follow us on LinkedIn H&N International GmbH

Find out more about **KAI farming assistant**

Patogenia

PRINCIPALES SUPERFICIES PROTEÍNAS

Desoxicolato sódico Dodecil sulfato sódico)

Aldehídos Beta- propiolactona Etilenimina binaria

Desinfectantes (MUY sensible a la materia organica)

Fenólicos Amonio cuaternario Agentes oxidantes Ácidos diluidos Hidroxilamina

Desoxicolato sódico Dodecil sulfato sódico)