

Building the bird of 100 weeks

Rearing is the pre-season

You need to get ready for the season

What is the genetic we select

It is the engine of your company

The budget has a cap

All the teams have limited resources

- 1. Do I have my basics cover?
 - 1. Will the structure hold the engine?
 - 2. Will the tyres resist the engine power?
 - 3. Is the oil and gasoline good enough?
- 2. How much am I compromising?
 - 1. If I reduce the gasoline quality, can the engine step up?
 - 2. If I use the tyres longer, can I make it?
 - 3. If I make more kilometres, do I need to reduce the RPM of the engine?
- 3. Does it make sense what I'm doing?
 - 1. What are my goals?
 - 2. Are the goals realistic?

Feeding - rearing

The preseason phase

.....

Not the same conditions

We need to adapt some details

Feed intake behaviour

Know how they eat

Pullet intake

No feed, no growth

0 - 3 weeks

4 - 16 weeks

A farmer can't reach the body weight at 5 weeks, and he can reach it at 16 weeks.

What is happening?

Bird requirement

What do they need in rearing?

Growth needs intake and digestibility

Digestibility

Impact of energy

Energy	< 20 days (kcal/kg)	>21 days (kcal/kg)
Corn	3150	3250
Soya 47%	2040	2360
Sunflower	1425	1615
Wheat bran	1515	1840

Digestibility

Impact of amino acid digestibility

Protein digestibility

Develop feed intake

Get ready

Ready for a big jump

Feed intake development

Size of the gut (vs relative weight)

Week 17	Control	Adding 2%	Adding 4%
GIT	11.5	11.9	11.9
Gizzard	3.6	3.80	3.98
ADFI (0-17 weeks)	48.9	49.3	49.6

Adapted from P.Guzman Poultry Science 94, Issue 11, 2722-2733

At 17 weeks

62 vs 71 gr

13.67 vs 15.76 lb/100

HOW MUCH FIBER IS NEEDED?

Know the base

FEED INTAKE EVOLUTION

Intake development prevents performance challenges

Standard Challenge

Many things happening at the same time

A period of variable needs

■ Maintenance ■ Growth ■ Egg mass

	Pre -Lay	Super Starter	Hybrid Feed
Application	-	+	+
Feed intake development	+	-	++
Calcification	+	+	+
Egg production	-	+	++
Cost of feed	+	-	+

Use of pre - lay

Old times

Energy is the driving force

Feed intake controls nutrient intake

Super starter layer – 2850 kcal

Preventing makes things worse

Hybrid feed - Concept

Nutrient			
ME	Kcal / kg	2700	Low energy
Dig Lys	%	0.8	
Dig Met	%	0.4	
Dig M+C	%	0.72	High amino acid
Dig Thr	%	0.56	
Dig Trp	%	0.176	
Са	%	3.8	Enough to lay one
Av P	%	0.44	coarse particle in p
CF	%	3.5-4	Keep the feed
Salt	%	0.28	Stimulate feed

egg and 60% article form

> intake development intake

How to use the Hybrid

Easier option

Expected feed intake for Hybrid

Brown in cage

Brown in cage free

Effect on egg size

What a development of feed intake can do

Egg size

30 weeks 58.5 vs 59.5 gr 46.4 vs 47.2 CW

Summary

Good pre-season is needed

- The pullet rearing ends up at 22 weeks
- The structure of the bird is key in any type of production.
- Feed intake development is key to longevity.
- Feed intake development doesn't mean bad efficiency in production.
- New approach at the start of production, Hybrid feed.

Thank you for your attention

H&N International – Making your success the center of our universe

Follow us on LinkedIn H&N International GmbH

Find out more about **KAI farming assistants**