KAAT

EW GROUP COMPANY

In ovo sex determination

H&N Distributor Conference

11th May 2022

Jörg Hurlin, Laura Zumbrink

KEY FACTS EW GROUP

- Founded in 1928
- 100% family-owned
- > 180 subsidiaries in > 45 countries
- Core business:
 - Animal Genetics (Poultry & Fish)
 - Animal Health (Vaccines & SPF / Clean Eggs)
 - Animal Nutrition (Feed additives)
- Employees: > 17,000 (2020/21)

BUSINESS ACTIVITIES – EW GROUP

Segment	Subsidiaries	Market position		
Broiler breeding	Aviagen	Global leading		
Turkey breeding	Aviagen	Global leading		
Layer breeding	LOHMANN TERZOCAT	Global leading		
Fish breeding	AquaGen GenoMar Saquabel	Global leading		
SPF & Clean eggs	B ut ut	Global leading		
Animal Vaccines	vaxxinova	Regional leading		
Feed additives	ew nutrition	Regional leading		
Technical Solutions		Regional leading		
Food / Grain storage	Riziand	National leading		

ABOUT AAT

Founded in 2015

Family owned

Based in Germany

EW GROUP COMPANY

AGENDA

THE PROBLEM

Germany:

- Ban of chick culling since 1.1.2022
 - AAT as only technology provider for in ovo sexing in a German hatchery
- Adaptation of the law 2024: in ovo sex determination only before day 7 of incubation
 - Probably there will be no in ovo sexing technology available!

(*Tierschutzgesetz*)

France:

- Ban of chick culling from 1.1.2023 onwards
 - Transition phase in 2022
 - All technologies until day 15 of incubation allowed
 - Five years security for the currently available technologies
 - State subidies for the hatchery investments

(Decret n° 2022-137)

Italy:

- Amendment to end culling of chicks in the layer industry by the end of 2026 passed the Italian parliament end of 2021
- The Senate, as the second chamber, still has to vote

Austria:

- Industry Agreement to end unnecessary chick culling, law in progress
- Production of frozen DOC for feeding for zoos etc. will still be allowed
- In ovo sex determination in the second third of incubation has to be done in combination with a welfare-friendly stunning method

(Austrian Industry Agreement)

OPTIONS TO STOP CULLING DAY-OLD

Carcasses of different origin (70 days of age)

Slow growing broiler ~ 2,8 kg carcass weight

Male layer hybrid ~ 1 kg carcass weight

Male dual purpose breed ~ 2 kg carcass weight

SEX DETERMINATION: FUNCTIONAL REQUIREMENTS

- Early
- Accurate
- Fast
- No negative impacts
 - Embryo
 - Layer performance
- Use of male embryos/eggs
- Inexpensive
- Sustainable
- Consumer acceptance: not too late/best before incubation

chicken embryo day 3 Photo: AAT

LOCATIONS OF SEX DETERMINATION TRIALS

Source: AAT

RAMAN-SPECTROSCOPY AUTOMATION

Source: AAT

based on <u>WO 2017/017277 PCT</u> patent publication "METHOD AND DEVICE FOR INTRODUCING AN OPENING INTO THE CALCAREOUS SHELL IN THE REGION OF THE BLUNT END OF INCUBATED BIRD EGGS WITH AN EMBYRO "

RAMAN SPECTROSCOPY

- For further information visit <u>www.agri-at.com/en/products/</u>
- Collaboration with University of Dresden and Ministry of Lower Saxony
- Proof in practice studies in the next 12 months

MARKET-READY ALTERNATIVES

AGENDA

DEFINITION AND APPLICATION OF HYPERSPECTRAL IMAGING

- Three dimensions: two spatial, one spectral
- hyperspectral = imaging of the whole spectrum

(BELLON-MAUREL und GORETTA, 2014; MANOLAKIS et al., 2013)

MANOLAKIS et al. (2013)

EXCURSUS: REGULAR COLOR SEXING

(hatching day)

thanks to systematic crossbreeding, brown layers are color-sexable

(TAYLOR, 1949; SMYTH, 1990)

Brown chicken can be sexed as day old chicks by feather colour

Males are white

Females are brown

There are some variations:

Males with one dark stripe

Females with one light stripe

There are some variations:

Light females with one light stripe with brown edging

There are doubtful chicks:

Males

Females

in the colour sexing of chicks by hatchery specialists, an accuracy of 99.5 % is achieved

- variation between the breeds possible
- doubtful chicks are sorted out as males to avoid sexing errors in the female flock

SEX DETERMINATION – HYPERSPECTRAL

based on WO 2014/033544 A9 PCT patent publication "Spectrophotometric analysis of embryonic chick feather color"

HYPERSPECTRAL MEASUREMENT

Optical Measurement on incubation day 13

- Non-invasive process
 - no risk of contamination
 - no risk of injury to the embryo
 - no influence of the measurement on the embryonic development
- Hatching eggs robust in handling on day 13
 - no system-related hatch reduction
- No expensive consumables (chemicals)
 - environmentally friendly
- Specific for brown layers

FULLY AUTOMATED CHEGGY MACHINE

- In ovo sex determination with high accuracies (> 96%)
- Fully automatic high-speed measurement (20,000 eggs per hour)
- Cost-efficient: only approx. 1/3 compared to the cost of other alternatives
- Easy to operate
- Online documentation of the results

VIDEO

FIELDSTUDY IN FRANCE

ANESTHESIE ELECTRIQUE D'EMBRYONS DE POUSSINS MALES AU DEU-NIEME TIERS DE L'INCUBATION DANS LE RESPECT DU HEN-ETRE ANIMAL

DE LA RECHERCHE FONDAMENTALE À LA PRATIQUE À HAUT RENDEMENT

Lours Zumbrink¹, Anke Førster¹, Jörg Hurlin¹

¹Agri Advanul Technologue (Todd) - Hagenbilgen I - 49425 FEBEX, German have empiriskile grant com

wisturk.

Now enter En è l'élémente de provins miles d'up (en de collection d'abscile charácteris quinte e fabile de sensi de vanderes ante la development d'une standard de la develor en de rechardeme. It is tensor index andres i dende de conge à sense commentation de conditionen attaine, en develor de sensi de la develor de la dev

ABOTRACT

Electroni ananziania of mulo ciaciam ambrevo in the out and the of of the incolution in compliance to annual welfare – it was hout a reactive in a high characylapsi operation do the billion of make due bill billion charach is major daranging and an anonolog, goes that methods are being so

As the VRIEs of nucleoty will highly choose be easied as ways as provide, provide worked we being works to a ministry out quarking demanma time are of the analyse being as analysis is a devolved. Will we mission being means pair sensions in the DC term of the control of the sension of the sensitive the sensi

gioranti buat Riomán de la Zachanda statuía el Pelagidasi à Rele Groc, Ticar, 11 oc.) A nove 2003

- AAT is the only technology provider that publishes detailed practical results
- Long-term study in France over 6 months
- Results are published at Itavi Poultry Research days in Tours, FR

FIELDSTUDY IN FRANCE

Key figures to evaluate in ovo sexing technologies

% sexing error	number of hatched males / all chicks hatched, as a measure of the accuracy of the technique
% total hatch	number of all chicks hatched / number of eggs set, as a measure for hatchability
% hatch of transferred eggs	number of chicks hatched / number of eggs further incubated after sexing, as a measure for hatchability after sexing
% female hatch	number of female chicks hatched / number of eggs set, as impotant parameter of animal welfare, sustainability and production planning
hatching eggs (HE)/fem	1 / % female hatch, as impotant parameter of animal welfare, sustainability and production planning

FIELDSTUDY RESULTS

4	hatched female chicks	38 %
	sexing error	4.1 %
AG	hatching eggs per female chick	2.6
Ш	hatching eggs per female chick (standard)	2.4
>	extra demand of hatching eggs	8%
	hatch after CHEGGY sexing	92.5 %

Average of 50 commercial flocks (six strains: HyLine Brown, Lohmann Brown, H&N Brown Nick, ISA Brown, Bovans Brown, Novogen Brown) in France between January and July 2021

RESPECTFUL HANDLING OF MALE EMBRYOS

BJØRNSTAD ET AL. (2015), MODIFIED:

The Journal Of Pharmacology And Experimental Therapeutics

In order to have an extra guarantee that the embryos do not feel pain an approved stunning method is essential.

Concept of an animal-welfare approved method for stunning chicken embryos

STUNNING METHODS FOR EMBRYOS – TECHNICAL FEASIBILITY

Method	Problem or Conflict	
Injection of approved narcotic-agents	Approved to use only by veterinarians, needed volumes, waste disposal, cost	
Carbon dioxide (> 80%)*	Investigate duration needed, no automation equipment available, space requirement, labour intensive (manual sorting)	
Maceration*	Often considered unaesthetic	
Cooling (>4h at 4°C) / Freezing*	No defined exposure for stunning, Space requirement, energy cost	
Heating (>45°C)	No defined exposure for stunning	
LAPS (Low Atmospheric Pressure Stunning)	Space requirement, no automation equipment available	
Electricity	Ensure electricity flow	

* Recommended for embryos after AVMA Guidelines for the Euthanasia of Animals: 2013, page 63

AAT CONCEPT FOR EMBRYO STUNNING

Stunning

Source: modified after Kalweit et. Burmeister 1995

39

RESEARCH EMBRYO STUNNING

Joined research project with University of Goettingen (Institute of Veterinary Medicine) and bsi Schwarzenbek (Consultancy Institute for animal welfare)

EuropPoult Sci. 84, 2020, ISW Mit-max & Verlig EugenUmer, Stungert, DOL 10. (Staleps rote) OL

Electrical anaesthesia of male chicken embryos in the second third of the incubation period in compliance with animal welfare

Tierschutzkonforme elektrische Betäubung männlicher Hühnerembryonen im zweiten Drittel der Brut

L. Zumbrink , G. Grunig', A. Fourstor', J. Hurlinth and M. von Wundowewicz⁴

Institute of Votenney Walking, Coorg Ruguet University of Cestingen, 37073 Cestingen, Commany

* Lohmonn Reasons Gritter, 20172 Cushoven, Cormany

⁸ Bgn Ansisted Technologies GmoH, aptop Vithek, Germany

⁴ buills diversamblek, Training and consistency motificate for source welfare at transport and disighter, 2 upg Schwarzenbek, Germany

"Correspondence: joerghur In@agri-at.com

Manuscript received 7 August 2020, accepted 21 September 2020

Abstract

99.3% successfully anesthetized

https://www.european-poultry-science.com/Electrical-anaesthesia-of-male-chicken-embryos-in-the-second-third-of-the-incubation-period-in-compliance-with-animal-welfare

HANDLING OF MALE EMBRYOS

Fully automated electrical anaesthesia

- Camera-based position detection of hatching eggs
- Special egg fixation system for equal penetration depths with different egg sizes
- Measurement and documentation of the achieved current flow per individual egg
- Throughput of 10.000 eggs per hour
- Surveyed by independent veterinary institute regarding animal welfare aspects

HIGH-QUALITY PROTEIN SOURCE

- Male embryos sorted out are classified in category 3 for further use in accordance with EC Regulation 1069/2009
- Further processing into dried egg powder, which can be used as feed for pets and livestock or for applications in the cosmetics sector
- The sensible usage of the sorted hatching eggs as a high-quality protein source makes the in ovo sexing a resource-saving and thus sustainable process

AGENDA

STAKEHOLDERS INFLUENCE THE FUTURE OF IN OVO SEXING

very complex interactions between stakeholders

circumstances are strongly country-specific!

MARKET MODEL IN OVO EUROPE THEORETICAL FIGURES

AAT machines = rental machines \rightarrow AAT service is needed Machines are not for sale!

OUTLOOK

- Market-ready in ovo technology for brown layers
- Additional secure stunning of embryos
- Most sustainable and efficient alternative to avoid chick culling

- → Big milestone for animal welfare in layer business
- → Opportunity to increase added value in the supply chain / new market segment

OUTLOOK

All current methods for in ovo sex determination increase the use of resources:

- 100 % accuracy not achievable
- sexing errors need to be reared
- additional hatching eggs
- additional egg handling, process relevant losses
- influence flock age, egg age, egg quality, etc....

 \rightarrow Without additional price from the market/ willingness to pay of consumers + pressure from legislators, the high-priced in ovo processes could not be established on the market

AAT

EW GROUP COMPANY

Agri Advanced Technologies GmbH

Hogenbögen 1. 49429 Visbek. Germany phone: +49 4445 950 59 727 . fax +49 4445 950 59 750 info@agri-at.com . www.agri-at.com

CHANGE IN PLANNING CRITERIA FROM A PRACTICAL POINT OF VIEW

INVASIVE METHOD – IN OVO

- Sampling of allantoic fluid (invasive)
- Analysis of metabolic marker by use of mass spectrometry

Currently no production!

Speed	6,500 eggs / h
Weekly capacity ¹	Ca. 60,000 – 70.000 ♀ DOC
Accuracy	~ 93 %
Female hatch	28 % (-13 %)
Female loss ²	33 %
Hatching eggs / ♀ DOC	3.6 → 50 % more hatching eggs!
Plannability	\mathbf{X}

 1 Assuming 1,800 females/h , 10 h/day and 4 hatches/week 2 Hatch loss / hatch rate of 41%

Hatchery Het Anker, Netherlands Planned: Lohmann Deutschland, Germany

Source: IN OVO

INVASIVE METHOD - PLANTEGG

- Sampling of allantoic fluid (invasive)
- DNA analysis through PCR test

Speed	3,000 eggs / h
Weekly capacity ¹	Ca. 25,000 – 40,000 ♀ DOC
Accuracy	~ 98 %
Female hatch	32 % (-9 %)
Female loss ²	22 %
Hatching eggs / ♀ chick	3.1 → 29 % more hatching eggs!
Plannability	\bigotimes
Sustainability	$\mathbf{\times}$

¹ Assuming 1,000 chicks/h, 10 h/day and 4 hatches/week ² Hatch loss / hatch rate of 41%

Hatchery ter Heerdt, Netherlands

Source: PLANTEGG

INVASIVE METHOD - SELEGGT

- Sampling of allantoic fluid (invasive)
- Endocrinological analysis through ELISA test

Speed	3,000 eggs / h
Weekly capacity ¹	Ca. 25.000 - 40,000 ♀ DOC
Accuracy	~ 97 %
Female hatch	31 % (-10 %)
Female loss ²	24 %
Hatching eggs / ♀ chick	3.2 → 33 % more hatching eggs!
Plannability	\mathbf{X}
Sustainability	\mathbf{X}
1 Accuming 1 000 chicks /b 10 b/s	low and 1 hotah as (woold

¹ Assuming 1,000 chicks/h , 10 h/day and 4 hatches/week ² Hatch loss / hatch rate of 41%

Hatchery Barneveld, Netherlands

NON-INVASIVE - ORBEM GENUS

Position

- MRI technology and artificial intelligence classification
- Pre-incubation analysis (pilot phase)
- Day 14 sexing (commercially not available, but one unit planned in France with Hendrix)
- No official results available
- Studies with AAT before day 7 revealed no sufficient accuracies

NON-INVASIVE - CHEGGY

- Non-invasive process
 - no risk of contmination
 - no risk of injuries to the embryo
- Hyperspectral measurement of feather color

Speed	20,000 eggs / h
Weekly capacity ¹	300,000 \bigcirc chicks
Accuracy	~ 96 %
Female hatch	38 % (-3 %)
Female loss ²	7 %
Hatching eggs / ♀ chicks	2.6 → 8% more hatching eggs
Plannability	
Sustainability	

 1 Assuming 7,500 chicks/h , 10 h/day and 4 hatches/week 2 Hatch loss / hatch rate of 41%

Hatcheries in GER, BEL, FR, IT, AUT, ES

COMPARISON

	In ovo	Plantegg	Seleggt	AAT / Cheggy	Rearing males
Speed eggs / h	6,500	3,500	3,500	20,000	According to
Accuracy	~ 93 %	~ 97 %	~ 94 %	~ 96 %	hatchery
Female hatch	28 %	32 %	31 %	38 %	41%
Female loss	32 %	22 %	24 %	7 %	0 %
Hatching eggs / \bigcirc chicks	3.6	3.1	3.2	2.6	2.4
Consumables	Test kits, sampling plates, needles, biomarker			Barn, feed, etc.	
Plannability	×	X	×		
Sample calculation on s Sustainability		X			\mathbf{x}
Additional need hatching eggs	A CONTRACT			1m	
Additional parents*		2 (And	C state	~4,347	Rearing capacities
*Assuming 230 hatching eggs/hen-housed			The second		

INTERIM CONCLUSION

- Liquid-based methods so far allow insufficient predictability of hatch, significantly increase resource consumption and are expensive; problematic due to high losses of female embryos
- Cheggy approach is plannable and sustainable, although for browns only and applicable after down can be detected
- All determination methods fully match actual legislation in the same way
- Rearing of males is plannable but not sustainable
- → All methods are necessary, in order to manage challenges regarding phasing out!

RESEARCH – APPROACHES BEFORE DAY 7

Fluorescence Spectroscopy

- TH OWL
 - "Minimally invasive" opening of the eggshell (< 2 mm, egg membrane remains intact, no sampling).
 - Time-resolved laser-induced fluorescence spectroscopy of proteins
 - Day 6, > 90 % accuracy (proof of concept, n = 31)

