

Quality control of feed

Parameters

- Composition
 - Nutrients
 - Structure
- Free of hazards
 - Biological hazards: pathogenic micro-organisms, parasites
 - Chemical hazards: natural toxins, chemicals, pesticides, etc.
 - Physical hazards: glass, metal, etc.

How much lysine does the soyameal of 46% CP?

1.2.6

2.2.7

3.2.8

4. Without data I'm just a guy with an opinion

1.3000 euro

2.5000 euro

3.7000 euro

4.10000 euro

Every day you are spending...

How much energy does a brown hen need daily?

1.280 kcal / day

2.290 kcal / day

3.300 kcal / day

4.310 kcal / day

Practical example

In March

				Egg			Energy
	Week	% Lay	Egg size	mass	BW	intake	intake
CH FR 3	36	95	59.5	56.5	1915	98	?

- Feed had 2850 kcal / kg
- Energy intake: 280 kcal / day / bird

Practical case

Pullet under weight 8 weeks

Corn and soya

Mortality at start of the production

Feed	Energy
Pre starter	2950
Grower	2900
Developer	2800

What do you think it was the nutritional reason?

1.Lack of energy

2.Lack of amino acids

3.Lack of phosphorus

4.Lack of vitamins

What do they have in common?

1. They are bad farmers

2. They have a bad nutritionist

3. They have the wrong breed

4.None of the above

Raw materials control

Visual:

- Indication
- Not a value for the nutritionist

Analysis

- Wet chemistry
- NIR technology

When I use NIR how much I can reduce wet chemistry

1.60%

2.70%

3.80%

4.I don't need it

How the NIR works

Reading: reliable machine

Wet chemistry: certified laboratory and many samples to detect outlayers

What to analyze

	Raw materials	Feed
Moisture	x	x
Starch	×	
Protein	×	x
Amino acids	x	x
Fat	×	x
Sugars	x	
Crude fiber	x	x
Ash	x	
Calcium		x
Phosphorus		x
Sodium		x
Chloride		x
Potassium	X	

I need to analyze sugars in soya

1.True

2.False

I need to analyze potassium in corn

1.True

2.False

How many analysis

- Volume of the feed
- Origins: how many suppliers
- Variability of the raw materials
 - Process raw materials more variable
 - Farming standards

What about the nutrient absorption?

- The variation of the amino acid digestibility is another factor affecting the accuracy of the formulation
- This variation becomes more and more important as we are formulating with digestible amino acid
- There are factors of each raw material physical and chemical influencing the digestibility

Formulations

RM	Diet	% M+C in RM	% M+C in diet	Total M+C in diet	% Dig M+C in RM	% Dig M+C in diet	Dig M+C in diet	Diff
SBM	20%	1.32	0.264	0.264	1.12	0.224	0.224	

SBM	17%	1.32	0.2204	0.264	1.12	0.187	0.216	-4%
MBM	4%	1.09	0.0436	0.204	0.72	0.0288	0.210	-4 /0

SBM	15%	1.32	0.1929		1.12	0.1636		
MBM	4%	1.09	0.0436	0.264	0.72	0.0288	0.210	-6%
RB	5%	0.55	0.0275		0.36	0.018		

Digestibility

Vs Equations

Mycotoxines are a microbiological hazard

1.True

2.False

How to keep the feed safe

- Produce safe feed that it will reduce the gut health challenges originated by the feed
 - At the feed mill: control of the raw materials and the process
 - At the delivery: control of the transport and limited preservation
 - At the feeder: preservation of the feed

I'm buying commercial feed, when I can complain about a Salmonella problem in feed?

1.When I found it in the feed at feeder

2.When I found it in the feed at the silo

3.When I found it in the feed sample at delivery

4.When I found it in the bird

Identify and evaluate the hazards

Hazard	Interest of screening	Cost (USD)	Level of interest
Total flora	Global assessment of the microbiological quality	7	+
Enterobact eriaceae	Facilitates the microbiological assessment of raw materials used Allows to assess the health risks for the animals Allows to assess the growth conditions	10	+++
E.Coli	Specific risk for the animals	8	++
Salmonella Sp.	Health risk assessment for the final consumer	13	?
ASR	Allows microbiological assessment of raw materials used Specific rick for the animals	13	++
Moulds and Yeast	Allows to assess the risk of mycotoxins presence in/production Allows to assess the growth conditions	8	+++
Mycotoxins	Allows to assess the health risk for animals	30 / ELISA	

Limits for the hazards

Log CFU/gr	Enterobacteria	E.Coli	Salmonella Sp.	Mould	Yeast
Cereal	3.5	< 1	Neg	<3.5	< 3.5
Processed raw material	< 1	< 1	Neg	< 1	< 1
Mash feed	3.5	< 1	Neg	<3.5	< 3.5
Pellet feed	< 1	< 1	Neg	< 1	< 1

Limits of the hazards

Aflatoxine B1

Product	ррт (12% М)
Corn, corn by products, copra, palm kernel, cotton seed	0.02
Other cereals and feed materials	0.05
Feed pigs and poultry (except young animals)	0.02
Other feed	0.01
Feed dairy cattle	0.005

EU legislation

Zearalenone

Product	ррт (12% М)
Cereals and cereal by products (except corn by product)	2
Corn by products	3
Feed for piglets and gilts	0.1
Feed for sow and fattening pigs	0.25
Feed for calves, dairy, sheep and goats	0.5
EU recommendation Poultry is resistant up to 800 ppm	INTERNATIONA

Limits for the hazards

Ocratoxin A

Fumonisin B1 + B2

Product	ppm (12% M)
Cereals and cereal by products	0.25
Feed for pigs	0.05
Feed for poultry	0.1

EU recommendation

Product	ррт (12% М)
Cereals and cereal by products	60
Feed for pigs, horses, rabbits and pet	5
Fish	10
Poultry, calves (< 4 months), lambs, baby goat	20
Adult ruminants	50
EU recommendation	INTERNATIONAL

This is my soya should I worry about it?

Log CFU/gr	Enterobacteria	E.Coli	Salmonella Sp.	Mould	Yeast
Soya meal	2.0	< 1	Neg	1	2.5

1.Yes

2.No

Points of control

Sampling

Technology

- Dust collection
- Cleaning practices
- Heat treatment
- Additives
 - Feed preservatives

Sampling budget

- Raw materials
- Feed
- Process

Budget

Philosophy of the sampling

Purpose:

- Obtain information upon which to base decision to reject or accept the product
- Acceptability:
 - Whether or not some particular organism or group of organism occur in number above a specified level

Weakness of the sampling

Nature of sampling:

Microorganism is unevenly distributed within the batches of feed

Analytical process

Related to the error inherent in the method used to detect or enumerate microorganisms

Unevenly distributed contamination

• A contamination of a batch can be summarized as follows:

Contamination examples

INTERNATIONAL

If I take 15 samples?

INTERNATIONAL

Result

How many samples do I need to take?

- n : number of samples
- P(x>0): probability of detecting contamination, the assurance that the batch comply with the established criteria
- d: true prevalence of the contamination in the batch

$$n = \log_{10}(1 - P_{(x>0)}) / \log_{10}(1 - d)$$

Are we sure?

True prevalence (d)	Number of samples Assurenace 95%
10 %	28
5 %	58
2 %	148
1 %	298
0.5 %	598
0.1 %	2,994
0.05 %	5,990
0.01%	29,956

- D / prevalence = 5%
- Plan: 58 samples in a year in one feed
- If I found 1 positive of the 58 samples

D new = 8%

The corn has a Salmonella prevalence of...

1.1%

2.5 %

3.10%

4.15%

The soya has a Salmonella prevalence of...

1.1%

2.5 %

3.9%

4.13%

The brans (rice or wheat) have a Salmonella prevalence of

1.4%

2.8%

3.12%

4.16%

The MBM (rice or wheat) have a Salmonella prevalence of

1.10%

2.15%

3.20%

4.25%

What is the most risky raw material in feed for Salmonella?

1.Corn

2.Soya

3.Brans

4.MBM

How to read the results?

- The log counts of a contamination follows a normal distribution when the batch is coming from a common source and is processed under uniform conditions
- A population (log counts) will have a mean log and a standard deviation

How to read the results?

	Enterobacteria	Mould	Yeast
Wheat	30	170	<10
Arg Soya	65	57	13
MBM	<10	13	<10
Local fish meal	<10	10	<10
US Soya	35	30	<10
Ceres Copra	<10	43	<10
Corn	5200	400	310
Rice bran	3400	510	120

	Enterobacteria	Mould	Yeast
Wheat	1.48	2.23	0.00
Arg Soya	1.81	1.76	1.11
MBM	0.00	1.11	0.00
Local fish meal	0.00	1.00	0.00
US Soya	1.54	1.48	0.00
Ceres Copra	0.00	1.63	0.00
Corn	3.72	2.60	2.49
Rice bran	3.53	2.71	2.08

How the sampling helps

- Raw materials
 - Purchasing strategy

- Feed
 - Reject products

Formulation

Trend of contamination

- Process
 - Quick alert of the contamination

Summary

- If the feed is the 60-70% of the production expenses we need to know what we are giving to the birds
- Stablish a system and follow up the efficiency
- The investment in quality is paid by itself

