

Layer nutrition in a nutshell

What are the targets of a layer

1. Produce one egg

2. Produce size with the resources she has

Behaviour of the birds

The broiler is a 'hungry' bird

Hen eats as she needs and what she produces

How many eggs produce a hen?

Layers don't lay number of eggs

Kg eggs = Number of eggs x Egg size

- Lighting program
- Nutrition

What do the hens need for egg production?

Bird requirements

- Energy
- Amino acids
- Ca / P and Vit D balance
- Vitamins
- Trace minerals

Performance vs nutrients

INTERNATIONAL

Needs

- Maintenance
- Growth
- Production

When the carcass of the pullet is developed?

When does the raring of the pullets end?

Pullets needs

How much fiber should I put in the pullet diet?

Target: reduce feed intake gap

Increase feed intake capacity

g / Kg BW	Control	Fiber
Crop	4.5	6.8**
Proventriculus	2.63	3.03*

Particle size of feed and management work

Kondra et al 1974

How much pre lay I have to use?

1. Until 3% of production

2. Until 5% of production

3. Until 6% of production

4. None of the above

On set feed - Concept

Nutrient		
ME	Kcal / kg	2700
Dig Lys	%	0.8
Dig Met	%	0.4
Dig M+C	%	0.72
Dig Thr	%	0.56
Dig Trp	%	0.176
Са	%	3.8
Av P	%	0.44
CF	%	4
Salt	%	0.28

Use: after the birds are housed to 70% of lay or the feed intake is over 90 grams / day

What is the most costly nutrient of the diet?

The energy for maintenance

1.Is same as production needs

2.Is less than production needs

3.Is more than production needs

Energy recommendation based on BW

Energy needs

Maintenance 64% Growth 2% Egg mass 34%

Energy intake it is temperature dependent

2. False

1. True

Layers maintenance need don't change, no matter the temperature

Effect of the temperature

The amino acids for production

- 1. Is same as maintenance needs
- 2. Is less than maintenance needs
- 3. Is more than maintenance needs
- 4. None of the above

3

I reduce egg size:

1.Reducing lysine

2. Reducing methionine

3.Reducing the isoleucine

4.All the above

Amino acid needs

Mg Lys Dig Brown Nick

Maintenance 20% Growth 1% Egg mass 79%

Make formulation based on egg mass

Egg mass	60-58			
MEn	30	1 kcal / he	n / day	
СР	17	7.5 gr / her	n /day	
	mg / hen / day	100	105	110
Dig Lysine	810	0.810	0.771	0.736
Dig Methionine	405	0.405	0.386	0.368
Dig Met + Cys	729	0.729	0.694	0.663
Dig Threonine	567	0.567	0.540	0.515
Dig Tryptophane	178	0.178	0.170	0.162
Dig Isoleucine	648	0.648	0.617	0.589
Dig Valine	709	0.709	0.675	0.644
Dig Argenine	844	0.844	0.804	0.767

Egg mass	57-55			
MEn	29.	5 kcal / hei	n / day	
СР	17	7.2 gr / her	n /day	
	mg / hen / day	100	105	110
Dig Lysine	780	0.780	0.743	0.709
Dig Methionine	390	0.390	0.371	0.355
Dig Met + Cys	702	0.702	0.669	0.638
Dig Threonine	546	0.546	0.520	0.496
Dig Tryptophane	172	0.172	0.163	0.156
Dig Isoleucine	624	0.624	0.594	0.567
Dig Valine	683	0.683	0.650	0.620
Dig Argenine	813	0.813	0.774	0.739

Egg size controlled by ALL the amino acids

Pullet same size at 17 weeks, same energy feed and production from 22 to 50 weeks

Protein (%)	Fat (%)	Lay (%)	Egg size (gr)	Egg mass
18.5	1.8	91.6	65.2	59.7
17.5	1.8	92.4	64.9	60
16.5	1.8	92.3	64.3	59.3

Need / day

INTERNATIONAL

Change of feed vs bird needs

Needs	Age	mg / bird / day	D Lys in feed (%)	Feed intake (gr/bird)
31		792	0.75	106
D Lys	53	831	0.72	115

- What does it happen if feed intake doesn't increase?
- 1. Drop of body weight
- 2. Lost of feathers
- 3. Increase of unspecific mortality
- 4. Lost of production

Ca – P – Vitamin D

Calcitonine antagonism of the PTH and depends on Ca levels

Ca – P – Vitamin D balance

How much a Brown Nick eats

How much Nick chick eats

What is the feed intake driver?

Feed intake

People dependent:

- Company-Marketing
- Farmer targets
- Production dependent:
 - Feed intake capacity
 - Housing:
 - Open vs Close; Winter vs Summer; Cage vs Cage free

Health

Deficiencies in nutrients

Feed intake behaviour

Courtesy of Steve Leeson

Feed intake

	Nec / ave / dia	105	110	115
EM	314	2990	2855	2730
D Lys	830	0.790	0.755	0.722
D Met	415	0.395	0.377	0.361
D M+C	747	0.711	0.679	0.650
D Thr	581	0.553	0.528	0.505
D Trp	183	0.174	0.166	0.159
Са	4.1 gr	3.90	3.73	3.56
Av P	420 mg	0.40	0.38	0.36

Feed intake – make your math

At the end: What is the cost of production per bird and flock?

INTERNATIONAL

What is the energy of corn?

What is the most energetic raw material?

How to calculate energy

Animal research

- INRA, NRC, FEDNA...
- Additive suppliers

Formula

- ME = 3.98 x gr starch + 3.10 x gr sugar
- + 3.7 x gr CP + 8.19 x gr fat

Where is the energy in the raw materials

	Energy kcal/kg	Starch	Sugars	Protein	Fat
Corn	3300	62%	1.7%	7.9%	3.5%
Wheat	3150	60.4%	1.5%	11.2%	1.4%
MBM	2650	0%	0%	52.3%	14.1%
Fish meal	3410	0%	0%	70%	9.5%
Soya meal 47%	2360	0.5%	7%	49%	1.9%
Rape seed meal	2030	0%	7%	31.2%	7.3%
Palm oil	8150	0%	0%	0%	99%
Soya oil	9000	0%	0%	0%	99%

Energy methods

By the book	ME Value	% in diet	Energy contribution	Total (kcal/kg)	
Corn	3300	55	1815	2202	6.40 more
Soya	2360	20	472	2287	6.4% more

By the formula	ME Value	% in diet	Energy contribution	Total (kcal/kg)
Corn	3104	55	1707	2140
Soya	2210	20	442	2149

Crude protein is limiting

The best soya is from

Crude protein

- The crude protein (CP) content is calculated from the nitrogen content of the feed or raw materials
- It is assumed that the nitrogen is derived from protein containing 16 per cent nitrogen, and by multiplying the nitrogen figure by 6.25 (i.e. 100/16) an approximate protein value is obtained
- This is not 'true protein' since the method determines nitrogen from sources other than protein, such as free amino acids, amines and nucleic acids

Amino acids

They will be limiting the production Minimum

- Egg production and size
- Growth
- Feathering

Key AA:

- 1st Methionine; 2nd Lys; 3rd M+C
- Keep a balance

Same SBM?

	n	Lys	TSAA	Thr	Trp
ARG	141	6.10 ^b	2.87 ^a	3.93 ª	1.37 ª
BRA	144	6.05 ^c	2.81 ^b	3.88 ^b	1.34 ^c
USA	170	6.16 ^a	2.87 ^a	3.91 ^a	1.36 ^b
SEM		0.005	0.005	0.002	0.001
Ρ		***	***	***	***

PSA, 2014

Variability of the raw materials

Simmins PH, van Kempen (1999)

Risk management in formulation

The best formulation for the birds

1.Left, cheap one.

2.Right, expensive one.

Enzymes need a substrate

Enzyme	Substrate	Where I can find it?
Phytases	Phytate/Phytic acid	All the vegetables
Xylanese	Xylans	Wheat, Barley > Corn
ßglucanase	ßglucanase	Barley > Wheat
Mananese	Mannans	SBM, Canola, Copra meal
Protease	Undigested proteain	All raw materials

Effect of phytases

Diet 1	%	Diet 2	%
Corn	50.47	Corn	43.31
Soya	34.44	Soya	33.11
Phytic acid	0.23	Rice bran	7
		Phytic acid	0.30

30% more substrate

Same effect of the phytase?

How much more P in the diet?

Recommendation after 70 weeks: 300 mg Av P/ bird / day

Performance vs nutrients

Uniformity

Summary

- We need to understand the needs but also the how we are going to supply those needs
- Birds will tell us how good is the formulation we are doing
- Making the feed is a process, all steps are important

