

Breeding for Alternative Systems

Dr. David Cavero

H&N Cage-Free Academy - Cuxhaven, 15th May 2019

Data Recording – Breeding Farms

Single Cages

- ✓ Rate of Lay
- ✓ Feed Intake
- ✓ Egg Quality
- ✓ Hatchability

- ✓ Rate of Lay
- ✓ Feather Cover
- ✓ Mortality

Floor System

- ✓ Use of Nests
- ✓ Feather Cover
 - ✓ Mortality

Data Recording – Commercial Farms

Group Cages

- ✓ Rate of Lay
- ✓ Feather Cover
- ✓ Mortality
- ✓ Adaptability

Free Range

- ✓ Use of Nests
- ✓ Feather Cover
- ✓ Mortality

Daily egg recording

Only saleable eggs are counted!

White Pure Line – 102 weeks

Selection for a Good Eggshell stability

Every day a saleable egg with an excellent shell!

Breaking Strength – Genetik Trend

Year

Rearing: An investment for the future Not only Costs! - BW & Uniformity: The key for success!

Train the birds to eat and drink at different levels Encourage bird activity throughout the system

Egg Weight

Influencing Factors:

- Light stimulation, Body Weight
- ➤ Feed
- ➤ Genetic h² ~ 0.6

Goal:

- > Max. N. eggs in desired class
- Fast EW increase at the beginning
- Flat EW curve after 60 weeks

Super Nick: Max. Egg Mass, high EW
Nick Chick: Max. Egg Number, moderate EW

Feed efficiency

Selection for improved efficiency reflects:

- Recording individual feed intake at peak of production
- Sufficient feed intake at greatest nutrient demand
- Feed intake according to production
- No special high density diet Flexible in raw material

Genomic Breeding Value Evaluation

Differentiation within full-sib family males

Conventional Breeding Values (EBVs)

Differentiation within full-sib family males

Genomic Selection

- More accurate Breeding Value estimation
- Better use of genetic variation
- > More genetic progress

Axiom® 384/96 Format (Affymetrix)

GeneTitan® Array Processing (Affymetrix)

Requirements for cage free systems

All the points mentioned before and additionally:

- Good bone quality
- Quiet behaviour No pecking/cannibalism
- Good feathering until the end
- Good nest acceptance Few floor eggs

Bone stability

High productive birds with the age:

- Eggshell quality decreases
- Medullary bones deteriorate (structural bones)
- Bone weakness, porosity and osteoporosis
- Increased incidence of fractures and deformations
- Reduction of animal welfare

Solutions:

- Nutritional factors: P, Ca, Vit. D3, ...
- Genetic selection

Bone Strength Improvement

Source: clker.com

Feather pecking & cannibalism

Selection for better plumage condition

- Test relatives in breeding farms & field conditions
- Selection for low mortality and good feather cover
- Family cages (full-sibs or half-sibs)
- No beak treatment

Heritability ~ 0,20 - 0,30

End of beak treatment...??

Selecting for better Beak Shape

Blunt Peak \rightarrow less injuries! h² ~ 0.15 - 0.25

Beak length

Different environments

Field Test under Field Conditions

Since birds are under different environments...

Target: To breed hens with a very good adaptability✓ Test under different field conditions

Better feather cover

Selection for low mortality and good feather cover

Purelines in Group Cages

Challenge Test for better feather cover Pure-line birds (Sib-test)

- 72 hens/cage No males
- Challenge Feed (No-Soja-Feed)
- High Light intensity & No beak treatment
- h² ~ 0.23-0.42

Field Test – Free Range

	Control	Challenge*
ME (kcal/kg)	2780	2750
Crude Prot. (%)	18	17
Crude Fat (%)	4.44	4.44
D Lys (%)	0.808	0.808
D Met (%)	0.429	0.386
D M+C (%)	0.680	0.605
D Thr (%)	0.568	0.568
D Trp (%)	0.183	0.183
D lle (%)	0.648	0.648
D Val (%)	0.747	0.747
D Arg (%)	1.043	1.043
Linol. ac. (%)	2.3	2.3
Fiber (%)	3	3

- Animal Fat,
 - easy to oxidize
- ✤ Low level Vit. E
- Use of DDGS

Test in Floor System

Floor house testing

➔ Increase of Saleable <u>Nest</u> Eggs

Genetic Parameters

	Floor Housing h ²	Single Cages h ²	r _g
Oviposition time	0,23	—	
Time in the nest	0,27	—	
Early Production	0,28*	0,31	0,82
Peak Production	0,35*	0,12	0,28
Egg weight	0,55	0,70	0,92
Breaking strength	0,24	0,35	0,61

* Nest Eggs

Nesting behaviour

Trait	Brown layer	White layer
Oviposition time	8:00	9:45
Stay in Nest with oviposition	30 min	45 min
Stay in nest without oviposition	10 min	28 min

* Switch on the light at 3:00

Nesting behaviour

Floor Test Family Nest and wide pop-hole

High Frequency Transponder

Nesting Behaviour Time spent in Nest (Minutes)

	Individual Nest		Family Nest	
	with oviposición	no oviposición	per visit	per day
Brown Layers	30	10	25	35
White Layers	45	30	45	75

Implications – Nest Capacity

White birds at peak production hour:

- 0.35 (% hens laying) * 0.75 (h in Nest) * 120 (hens/m²)
- This gives a stocking density: 30 hens/m² Nest
- Plus additional visits without laying
- Better not to go above 100 hens/m² Nest
- Brown birds at peak production hour:
 - 0.25 (% hens laying) * 0.5 (h in Nest) * 120 (hens/m²)
 - This gives a stocking density: 15 hens/m² Nest

Use of Wintergarden

Use of the winter garden

Wide electronic pop hole

Single hen pop hole

Stay in the winter garden

INTERNATIONAL

Performance and free-range traits

Genetic Parameters

	laying performance	frequency of passages	length of stay in a winter garden
laying performance	0.16	-0.08	-0.34
frequency of passages		0.24	+0.82
length of stay in a winter garden			0.24

(Icken et al., 2008)

...also for Alternative Systems!

