

New diseases and health risk in Alternative systems

What is happening?

 Faecal-oral infection is possible

2. Hens have contact with pathogens in the outdoors 3. Flock management is more complicated

Most important health problems in US

Cage-free layers

	2014			2010	
Rank	Concept	Importance	Rank	Concept	Importance
1	Coccidiosis	2.00	1	Coccidiosis	2.19
2	Marek's diseases	1.77	2	Piling	1.71
3	ILT	1.36	3	Vaccinal ILT	1.71

2016

Cage-free l	ayers
-------------	-------

2014			2016			
Rank	Concept	Importance	Rank	Concept	Importance	
1	Cannibalism	2.00	1	Colibacillosis	2.29	
2	Coccidiosis	1.87	2	Cannibalism	2.24	
3	Coibacillosis	1.87	3	Vaccinal ILT and MG	1.71	

Source: Association of Veterinarian in Egg Production

2011

Coccidiosis

Coccidiosis

Etiologic agent:

Eimeria Spp.

- It is a protozoa that needs to cycle in the environment and in the poultry gut
- Different species produces different lesion in the gut
- It is present worldwide

EIMERIA CYCLE

POULTRY COCCIDIA

- Infectious form is the oocyst
 - Very resistant in the environment
 - Heavy and big
- Oocyst need to sporulate to become infective
 - Humid and warm ambiance
- It is present worldwide

Eimeria species

Different species differs in :

- Oocyste size and morphology
- Infected part of the gut
- Type of lesion
- Prepatent period
- Sporulation time
- There is no cross protection between species

INTERNATIONAL

INTERNATIONAL

Gut health & Coccidia

60 days old broilers

Alnassan 2014

CONTROL

Short life birds Anticocci programs No delayed growth No Cocci resistance Vaccines Long life birds Long lasting **Essential oils** immunity against Vaccines + anticocci programs the different eimeria species Vaccines Challenge required !!!

Vaccines

Different vaccines types

Type of birds

Type of birds

Short life birds

• Eimeria acervulina, Eimeria maxima, Eimeria Tenella, Eimeria Mitis, ...

Long life birds

 Eimeria acervuline, Eimeria maxima, Eimeria Tenella, Eimeria Mitis, Eimeria Brunetti, Eimeria Praecox, Eimeria Necratix Live Attenuated vaccines

- Embryonated egg passages (E. Tenella)
- Precocious strains

Live Non-attenuated vaccines

Never mix different commercial vaccines

Coccidia vaccines

1 day old broilers

Adapted form M. Dardi

Attenuation by precocity

Vaccine adminsitration

Vaccine recirculation

Round worms

Round Worms

- Ascaris
 - Ascaridia sp.
 - Heterakis sp.
- Capillaires
 - Capillaria sp.
- Spirures
- Strongles
 - Trichostrongylus tenuis

Heterakis

Capillaires

Ascaridia

Ascaridia

Etiologic agent:

Ascaris Galli.

- Nematode that can measure 6—11cm as adult and infest the intestine
- Egg drop and bodyweight losses is possible in case of strong infestation
- No report of infestation in humans
- It can be hosted by earth worms

Heterakis

Etiologic agent:

Heterakis gallinarum

- Nematode that measure 1-1,5 cm and infest ceca.
- It can produce ceca inflamation
- It can host Histomona meleagridis

Histomoniasis

Etiologic agent:

Histomonas meleagridis.

- Flagellated amoeboid
 Protozoan
- Sulfur-colored
 droppings, characteristic
 lesion in ceca and liver
- High mortality (30%)
 can occur in chicken
- Very complicated treatment because the lack of authorized drugs

Ascaris Ecology

17 weeks old layers

CONTROL

- Erradication is not possible → go for population control:
 - Monitorize
 - Ascaris finding in autopsies
 - Egg in faecal droppings
 - Treatement
 - Flubendazol
 - Piperazine
 - Be careful about resistance
 - Passive control
 - Clean & disinfection ?? (Quick lime)
 - Outdoor park rotation

Brachyspira

Brachyspira

Etiologic agent:

Brachyspira iloscoli Brachyspira intermedia

- bacteria genus spirochaeta
- Reduced egg production, downgrading of shell eggs, bodyweight loss
- Most common in free range birds

Brachyspira

Brachyspira ecology

66 layers flocks

Hess 2017

Raw materials

Phillips 2012

Treatment

- Avoid colonization
 - Cleaning and disinfection between batches of birds,
 - Strict biosecurity routines
 - Rodent control should be applied to avoid colonization
- No vaccines are currently available for use in poultry or other animals.
- Antimicrobial treatment. Lack of appropriate licensed products often restrict the use ofantimicrobials in poultry.

Antimicrobial treatment

Minimal inhibitory Concentration for Australian isolates

	B. inte	rmedia	B. pilosicoli	
Antimicrobial	MIC ₅₀	MIC ₉₀	MIC ₅₀	MIC ₉₀
Tiamulin	0.1 - 1	1-4	< 0.1	0.1 - 1
Lincomycin	<1	10 - 50	1 - 10	10 - 50
Tylosin	<4	>100	4 - 20	>100
Metronidazole	0.1 - 1	0.1 - 1	0.1 - 1	0.1 - 1
Tetracycline	<1	1 - 5	<1	1 - 5
Ampicillin	<1	<1	1 - 10	>100

Hampson 2003

Spotty liver

Spotty liver

Etiologic agent:

Campylobacter hepaticus

- Increased mortality of laying hens that are in good condition, often decreased production
- Multiple small foci of necrosis and inflammation
- Mostly in free range hens

A new disease ?

- 1950 USA. Similar disease in layer
- 1980 Australia. Similar disease reported
- 2000 Australia. Unknown etiology disease outbreaks
 - Vibrionic hepatitis ?
 - Helicobacter pullorum ?
- 2017 Etiologic agent: Campilobater hepaticus

CONTROL

Antibiotics

- Chlortetracycline 3-5 days
- Lincomycin and spectinomycin
- Medium chain fatty acids (as preventive)
- Good husbrandy
- Vaccine ??

Escherichia Coli

Escherichia Coli

Etiologic agent:

Eimeria Spp.

- Gram bacteria. High variability in genetic material
- Opportunistic pathogen most of times
- Peritonitis, pericarditis, oophoritis, salphingitis, perihepatitis, ...

An opportunistic bacteria?

- Routinely isolated from gut flora of healthy hens
- Pathogenic and nonpathogenic isolates of E. coli are similar in biochemical characteristics
- A number of potential virulence factors have been identified in APEC strains

Virulence factors

- Certain O serotypes (O1, O2, O78)
- K80 capsular antigens
- Colicin production (esp. ColV)
- Presence of siderophores (aerobactin)
- Fimbria
- Non-fimbrial adhesins
- Motility Outer membrane proteins (traT, iss)
- Enterotoxins (STx,VTx,LT,ST)

Route of infection

Egg-producing brown layers of various ages challenge by APEC

Epidemiology

Case control study in 40 commercial caged layer flocks

Statistically Significant variables (14/42)

- ✓ Rodents having access to the henhouse
- ✓ Regular treatment against flies
- Pattern of light increase at the beginning of the batch
- ✓ Pre-lay feed offered
- Number of other poultry farms within a 1 km radius
- Percentage in lay at 22 weeks versus the target
- ✓ Number of visitors entering the hen house
- ✓ Frequency of water disinfectant use per year
- ✓ Number of hens in the flock
- ✓ Well depth
- ✓ Distance to the nearest poultry farm
- ✓ Age of beak trimming
- ✓ Volume per hen

Non Statistically Significant variables (28/42)

- ✓ Biosecurity score
- House cleaning method between batches
- Disinfectant used on house between batches
- ✓ Use of feed supplements
- Duration house empty between two batches
- ✓ Only poultry kept on the farm
- Production parameters
- Extra vaccinations

Vandekerchove 2004

Oxidative stress

CONTROL

- Good husbandry
- Good tracheal health
- Vaccination
 - Live vaccines
 - Autogenous inactivated vaccines
- Antibiotics (not in Europe)

INACTIVATED VACCINE

Infectious Bronquitis

Infectious bronchitis

- <u>Etiologic agent:</u> Coronavirus
- Worldwide importance
- Huge capacity to mutation
- A highly infectious disease of chickens of all ages and type
- Worldwide importance

IB CLINICAL SIGN & LESIONS

1. Primary infection site – upper respiratory tract

Early infection: - Hidroponic oviduct

IB VARIANTS

- Result from mutation or genetic mutation
- A new variant is recognised in the laboratory by:
 - Serotyping (traditional method)
 - Genotyping (increasingly used)
- Different pathotypes

IB CONTROL

- BIOSECURITY
 - Corner stone but not enough!!!
- VACCINATION
 - Live and inactivated vaccines available
 - 2 or 3 live vaccines + inactivated vaccine in rearing
 - Live vaccines in production
 - Use different strains if available → protectotype
 - Protect chicks from day 1 !!!

PROTECT TYPE CONCEPT

Source: J. Cook

- Use two or more highly immunogenic and not related vaccines
- Variant vaccine are said to provide a better protection against similar field virus
- BUT real protection is only know after lab or field trials

